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The noise produced by mean flow-turbulence interaction of a circular subsonic 
jet is investigated theoretically, and expanded in azimuthal constituents of the 
turbulent pressure fluctuations. It is found that the low-order azimuthal con- 
stituents are the most efficient sound sources. On the basis of pressure correlation 
measurements, the azimuthal constituents are determined in a low Mach number 
jet. It is found that, in a range of Strouhal numbers between 0.2 and 1, the first 
three to four azimuthal constituents clearly dominate over the rest of the turbu- 
lent source quantity. A strictly axisymmetric ring vortex model for the coherent 
structure of the turbulence is, however, shown to be inappropriate. 

1. Introduction 
Despite the fact that  numerous papers on jet noise have already been published, 

i t  is felt that  this long-standing problem is a great way from being thoroughly 
understood, as far as the modelling of turbulence is concerned. The large-scale 
orderly structure of jet turbulence, found by Mollo-Christensen (1963) and 
explained by Crow & Champagne (1971) as being produced by an instability of 
the turbulent jet boundary layer, became the subject of a discussion as to how 
relevant the coherent part of the turbulence might be to the jet noise problem. 
It is clear that, if the coherent part of jet turbulence were to  contribute essentially 
to  the far-field of jet noise, several so far well-accepted assumptions, about jet 
turbulence and its effect on jet noise, would have to be re-examined. 

A theoretical approach to the jet noise problem, which is most apt to take into 
account large-scale phenomena of jet turbulence, has been proposed by Michalke 
(1970, 1971). Starting from Lighthill’s equation, the basic idea of that approach 
was to include symmetry conditions in a circular jet. By introducing cylindrical 
co-ordinates, the source term of the Lighthill equation was expanded with 
respect to the azimuthal angle. A Fourier transform with respect t o  time finally 
led to  the conclusion that the axisymmetric and low-order azimuth-frequency 
components of the source term should be the most efficient sound sources in 
a circular jet. 

It was another question, however, whether such components of turbulence 
exist in practice in a turbulent jet. Measurements of pressure fluctuations in jets 
by Lau, Fisher & Fuchs (1972) and by Fuchs (1972 b) gave strong evidence for the 
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existence of axisymmetric, wavelike pressure components. But there was still the 
problem of how these pressure components could be related to Lighthill’s source 
term and the far-field noise. 

The objective of this paper is to describe the jet noise far field by means of the 
turbulent pressure fluctuations, and identify quantities of the turbulence that 
are the most closely related to the radiated noise. Furthermore, by experiments, 
the jet turbulence is investigated with respect to these quantities, in order to 
estimate their magnitude and relative importance for the radiated noise. It is not 
intended to calculate and measure in detail the far-field noise characteristics, 
however. 

The theoretical part of this paper is restricted to that part of jet noise generated 
by the interaction of turbulence with the mean shear flow. Neglect of the so-called 
‘ self-noise ’ produced by turbulence-turbulence interaction may be somewhat 
questionable, although many authors have proceeded in this way (cf. Lighthill 
1954; Lilley 1958; Ribner 1962; Jones 1968; Pao & Lowson 1968). But it is felt 
that, at  least in certain regions of the jet flow, and with respect to certain direc- 
tions of noise radiation, the noise produced by the mean flow-turbulence inter- 
action may be dominant. 

For subsonic Mach numbers, the power spectral density of the far-field noise 
produced by mean flow-turbulence interaction is derived in 3 2, It is essentially 
determined by the cross-spectral density WpIp, of the turbulent pressure fluctua- 
tions. Following the scheme of Michalke (1972), WPlpz is expanded in a Fourier 
series of azimuthal constituents q2,,, in § 3, and introduced into the sound power 
spectrum. The importance of the various azimuthal constituents with respect to 
the sound power spectrum is discussed in $4. The measuring of pressure fluctua- 
tions and their filtered space correlations is described in 3 5, while 6 deals with 
the evaluation of circumferential correlations with respect to the azimuthal 
constituents. Results of measurements at  low Mach numbers are presented in $ 7. 
These show the importance of the low-order azimuthal constituents q2,nz in 
the Strouhal number range 0.2 < St Q 1 for the circular jet and x/D 6 10. A 
final discussion of the experimental results, and their importance for the 
theoretically derived far-field noise, is given in 3 8. A more elaborate description 
of the present investigation can be found in Michalke & Fuchs (1974). 

2. Theory of sound produced by mean flow-turbulence interaction 
Our theoretical approach to the jet noise problem is based on the Lighthill 

(pcic j -Ti j )+- ---p . 
a t 2  a 2 [ p  a; 1 equation 1 azp a p  a2  - -- 

a; at2 ax; axiaxj 

Here a. is the constant speed of sound in the fluid a t  rest surrounding the jet flow; 
p ,  p and ci are the pressure, density and velocity vector in Cartesian co-ordinates 
xi, respectively. In  the following, we neglect the viscous stress tensor rij and the 
last term in (2.1), which is only important when entropy and/or pressure fluctua- 
tions, in connexion with a mean temperature profile, are present in the jet flow. 
This approximation is justified for large Reynolds numbers, and for a jet 
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temperature equal to the ambient temperature a t  moderate subsonic Mach 
numbers. 

The sound pressure ps in a far-field approximation is then, according to 
Lighthill (1 952), 

The brackets [ ] indicate that the expression is to be evaluated at  the retarded 
time 

P xiyi 
t,=t--+--. 

a, a,P 

yi denote the Cartesian co-ordinates of the source points; and d V is the volume 
element of the source volume V and t = ]xi] .  

With the index r indicating a vector component in the direction of xi, (2.2) can 
alternatively be written as 

It is clear that the far-field sound pressure ps  can be calculated, if the source 
function in the integrand of (2.2) is known. This assumption is the basis of 
Lighthill's theory. It implies that the required flow quantities e m  be measured 
and/or described analytically. But this is the critical point, since a sufficiently 
accurate measurement of the tensor quantity pci cj, or its correlation function, 
is a formidable task. With respect to the mean flow-turbulence interaction term 
of sound pressure (the subject here), the source function can be expressed by the 
pressure fluctuations, which have the advantage of being a scalar quantity. 

By means of the inviscid equation of motion and the continuity equation, 
another equivalent form of the solution (2.4) can be derived. As shown in the 
appendix, for a local Mach number component in the xi direction 

(2.4) can be written as 

1 a 2  pcr(2-M,) 
ps(xi,t)=-- "I dV [ a (  2 -  ~- ",)+--( )] (2.6) 

4nia; at (l-&lJ3ayr a,at2 ( I - K ) ~  ' 

slay, is the gradient in the xi direction. . 
When the velocity vector ci is split into a mean 5, and a fluctuating part c{ (note 

p =p ' ) ,  one obtains in (2.6) a mean flow-turbulence interaction term pss,MT (or 
briefly, p,,), which is generated by the turbulent pressure fluctuations p' alone, 
and a turbulence-turbulence interaction term ps,TT, which is generated by, a t  
least, products of turbulent fluctuations. 

In the following, of the pMT terms we shall deal with only 
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For M r + O  (2.7) is usually denoted as the ‘shear-noise’ term, which was first 
discussed by Lighthill (1954).  The last term of (2.7) corresponds to  one neglected 
in that paper, using the argument that it “represents an octupole field and must 
be expected to radiate relatively little sound, especially at  lower Mach numbers ’,. 
This is, in fact, evident from (2.7).  However, because the second term is propor- 
tional to the second time derivative of the pressure, in contrast to the first time 
derivative of the first term, the decisive parameter for the importance of both 
terms in (2.7) is (besides the factors containing different mean flow quantities) 
the product of Mach number and a characteristic frequency (Strouhal number). 

I n  order to avoid confusion, it should be emphasized that, in (2.7),  the integra- 
tion over the source volume is with respect to aJixed frame of reference. The 
powers of ( 1  - &ir) should therefore not be mistaken for convective amplification 
terms of the type (1 - M c ~ ~ ~ 8 ) - n ,  which are obtained when the turbulence is 
considered in a frame of reference moving with a convection Mach number J&. 
The power spectral density W,, of p,, can be deduced from (2.7) by standard 
methods, via the autocorrelation R,, and its Fourier transform, yielding 

Here L is a complex quantity, which depends on the mean flow quantities and 
on frequency in the following manner: 

The superscript A denotes the complex conjugate value. The local position in 
the source region a t  yil is denoted by the index 1,  and the position a t  yi2 by the 
index 2. Wplp, is the cross-spectral density of the turbulent pressure fluctuations 
p’ .  Furthermore, the wavenumber of sound and the wavenumber vector in the 
zi direction are denoted by 

f is the frequency. The exponential term with imaginary argument in (2.8) takes 
the effect of retarded time into account or with other words, it  is an acoustic 
interference function acting on the sound sources distributed in the jet. Only 
when the spatial extension of the ‘effective ’ source distribution (defined by 
~ ~ l L 2 W p l p z \  >, E for a sufficiently small e) is small compared with the sound 
wavelength 2n /k  can we treat the source distribution as ‘acoustically compact ’, 
and neglect the acoustic interference. In  order to evaluate (2.8),  the mean 
velocity distribution Ci(yi) and the cross-spectral density Wplp,(yil, yi2)  of the 
turbulent pressure fluctuations have to be known. But both quantities can be 
measured in a turbulent jet by means of hot-wire techniques, and by the pressure 
correlation techniques (cf. Fuchs 1972a, b ) .  

k = wlao = 2nf/a,, ki = kxi/?. (2.10) 

3. Expansion of the source term 
As proposed by Michalke (1970) ,  it is appropriate for a circular jet to use 

cylindrical co-ordinates (x, r ,  4) instead of the Cartesian co-ordinates yi,  where 
the x direction coincides with the jet axis. The Cartesian co-ordinates xi of the 
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field point are conveniently replaced by polar co-ordinates (P,8, $ I ) ,  where 8 is 
the angle with respect to the jet axis. 

The turbulent pressure fluctuations p’(x, r ,  $, t )  in the source region can then 
be expanded in a Fourier series with respect to the azimuthal angle q5 (cf. Michalke 
1972). This means that the turbulent fluctuations can be separated into axi- 
symmetric and higher-order azimuthal components. Because of symmetry condi- 
tions in a circular jet, the cross-spectral density WpIp, of the pressure fluctuations 
can depend only on A$ = $z - q51, not on $2 and separately. Additionally, 
WpIp, must be a periodic function with respect to A$. Therefore the cross-spectral 
density can be expanded in a Fourier series in A$ : 

m 

T4<2,m are the complex Fourier coefficients. It may be noted that each W12,m is 
determined solely by the corresponding mth azimuthal constituent of the 
pressure itself. 

The mean velocity field of a circular jet without swirl consists of an axial 
velocity component U(x,r )  and a radial component E(x,r). Hence the mean 
velocity component in the xi direction is 

where x = $ - $ I  

Furthermore, we find 

(E Z) . ( ac, az _ -  - C O S ~ ~ - + & S ~ ~ ~ ~ C O S X  -+- +sin28 
ayr ax 

Let us denote the jet exit velocity by U, and the nozzle exit diameter by D, and 
normalize all velocities by U, and the co-ordinates x, r ,  P by D. Then we have the 
dimensionless mean velocities 

U = U/Uo and V = VlU, with U 6 1, 

whereas for a jet flow 1 Vl < 1 holds. Again, the dimensionless co-ordinates 

X = x/D, R = r/D and =?ID 
will be introduced. 

follows that approximately ( I  VI < 1) 
Finally, we assume a jet Mach number M = U,/ao < 1. Then from (3.2) i t  

1 -@, G 1 - U ( X ,  R) M cos8. (3.4) 

Using (3.2), (3.3) and the approximation (3.4), one obtains from (2.9), by a simple 
calculation, 
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where 

" 9  

( 2 -  U M C O ~ O )  

(1 - UIM cos 0)z 
[" + "1 - ikD sin O 

'- ( l - U M ~ o s 8 ) ~  sin2e [a" B-x "I * 

sin 20 
A -  

1 -  ( ~ - U M ~ ~ ~ O ) ~  a~ ax 

A -  

1 (3.6) 

Equation (2.10) yields 

k i (y i2 -y i l )  = - k D { ( X 2 - X , )  c 0 ~ 8 + s i n O ( R ~ c o s ~ ~ -  R , c o s ~ ~ ) ) .  (3.7) 

The dimensionless frequency may be expressed by the Strouhal number 
St = fD/Uo, and is related to kD by 

kD = ZnfDla, = 2nStM. (3 .8 )  

Introducing (3.1), (3.5) and (3.7) into ( 2 . 8 ) ,  the sound pressure power spectrum 
becomes, after integration with respect to x1 and xz, 

x Kz,m(X1,R1, ~ 2 , ~ 2 )  ~ , 1 ~ , 2 e ~ ~ { - i ~ ~ ~ ~ ~ ~ ( ~ , - ~ , ) } .  (3.9) 

The quantity 2, is defined by 

z,= ( -  V n { 2 A o ( X ,  R, 0) J,(4 + .L'A,(X, R, 0) [Jm-1(4 - Jm+l(41 
- A , ( X ,  R, 0) [Jm-E(u) + J m + 2 ( g ) ] ) *  (3.10) 

Here Jm is the Bessel function of order m and 

IJ = kD sin OR. (3.11) 

It is easily seen from the behaviour of the Bessel functions that the product 
&mlZm2 remains the same when m is replaced by -m.  Hence the solution (3.9) 
can also be written as an infinite sum with only positive m: 

x q Z , m ( x 1 , ~ 1 ~ 2 ,  ~ 2 )  -@m(X1,R1,0)zm(~2,~2,8)exp[-ik~cosO(~2- X I ) ]  

(3.12) 

(3.13) 
%2,m = K 2 , m  for m = 0. 

Up till now, we have not introduced any model of turbulence. But we can see, 
from (3.12), that the sound pressure power spectrum W,, is built up from contri- 
butions of the individual azimuth-frequency components of the turbulent pres- 
sure. This is reasonable, but the important result is that each member of the 

1 where %2,m = ~ 2 , m + K 2 , - m  for m 2 1, 
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series is strongly weighted by the terms 8,. According to (3.10) and (3.6)) these 
terms contain (besides mean flow quantities) the Bessel functions J,, Jmf l ,  
JmfB, which are independent of the flow quantities, but depend on m and on the 
argument cr defined by (3.11). 

4. Discussion of the theoretical results 
The expansion of turbulence into azimuthal constituents, introduced in Q 3, 

leads to the result (3.12). It shows very clearly that two different interference 
mechanisms influence the sound radiation. The first one is the axial interference 
expressed by the exponential function with imaginary argument. This function 
is independent of m and therefore the same for all azimuthal constituents. The 
second mechanism is the radial interference expressed by the Bessel functions 
J,, Jmfl, Jm&, in (3.10), which depend on m and CT. Therefore, the influence of the 
radialinterferenceis differentfor each azimuthal constituent. Owing to (3.11)) the 
argument of the Bessel function is proportional to kD, (3.8), and sin 8. Owing to 
(3.6), the quantities A,, A, and A,  in (3.10) depend on 8, on kD and on the mean 
flow properties, but are independent of m. Therefore they can be assumed to be 
known. As function of the radial co-ordinate R, the quantities A,, A,  and A ,  
vanish outside the jet, since the mean flow there tends to zero. Hence we can 
restrict the integration to, say, (Rl, R,) < R*. For a circular jet, we know from 
experiments that,, in 0 < X < 12) we have approximately 0.5 < R* 6 2. Hence, 
the upper bound for CT is CT 6 S, where 

S = (kDsin8) R* = 27rStMR* sine. (4.1) 

6 can be taken as a jet thickness parameter, since it is a measure of the acoustical 
thickness of the jet relative to the sound wavelength. As function of the jet angle 
8, S is a maximum for 8 = 90" (i.e. normal to the jet axis), but 6 is zero for both 
0 = 0" and 180" independent of kD. Hence we have 6 < 1 for 8+0, 7r. A rough 
upper bound for the Bessel functions is for CT < 6 

IJm(g)I 6 ($S)*/m!. (4.2) 

It follows that, for 6 < 1 and m + 0, the Bessel function J,, tends strongly to zero 
with increasing m, whereas only for m = 0, J0+ 1. As a consequence, we find 
from (3.10), (3.6) and (3.8) that, for m >, 1 and 8 + O o  or 180°, Zm+O; for 
m = 0 and 8+0", 

47r (au i7rStUM(Z-UM)(l-UM) ; (4.3) I ' o +  (1 - U M ) ~  ax- 
and, for 8 -+ 180°, 

With respect to (3.12) this means that for 8-t 0, 7r the power spectral density of 
sound pressure W,, consists only of the first member (m = 0) of the infinite series. 
The physical explanation of this phenomenon is that only axisymmetric com- 
ponents of turbulence can contribute to the sound radiation in the direction of 



186 A. Michalke and H .  V .  F u c h  

the jet axis. But one may ask whether there are axisymmetric components of 
turbulent pressure fluctuations in a circular jet a t  all, leading to non-negligible 
values of R2, ,. The experimental results in S 7 will indicate the presence of strong 
axisymmetric constituents for Strouhal numbers 0.2 6 St 6 1, whereas for 
X t  > 2 their strength is very small compared with that of the higher azimuthal 
constituents with m 2 1. It can be shown (cf. Michalke & Fuchs 1974) that, for 
the frequency range 0.1 5 St 5 2 important for jet noise (cf. Mollo-Christensen, 
Kolpin & Martuccelli 1964)) both terms of (4 .3 )  and (4 .4 )  have to  be taken into 
account. 

For jet angles 0 < 0 < n the jet thickness parameter (4.1) increases as 
S - XtM sin 0. As a consequence, additional contributions to the power spectral 
density W,, of sound pressure will originate from the azimuthal constituents 
with m 2 1. Lighthill (1954) stated that, for a jet angle 0 = 45", a maximum of 
sound radiation should occur for shear noise. Let us therefore discuss the term 
2, for m = 0,  1, 2 ,  at a jet angle 0 = 45") when, for simplicity, the small P com- 
ponent and dU/dX are neglected. From (3 .10)  and (3.6)) we then find 

where N = (1  - U M / J 2 )  and (T = k D R / 4 2 .  

We see, from (4.5) and (3 .12 ) )  that it is difficult to decide whether, a t  8 = 45', 
a maximum of sound radiation will occur or not, especially when the required 
double integration over the source volume and the unknown azimuthal con- 
stituents ml,,, are considered. For small frequencies (kD < I ) ,  however, we find, 
from (4.5), retaining only terms up to O(kD),  

au 
2, = - inN-3 - kD/2  J 2 ,  

aR 

and 2, = 0 for m 2 3, to that order. It is obvious that in the limit kD+O 
the term 2, dominates. From (3 .12)  it follows that, in that limit, a maximum 
of sound radiation can only occur if the first azimuthal constituent @12,1 is 
different from zero. On the other hand, owing to (3 .8 ) ,  k D  < 1 is equivalent 
t o  StM 0.16. This condition hardly holds for the Strouhal number range 
0 . 2  5 St 5 2 important for jet noise. 

At a right angle to the jet axis (0 = goo), 2, is very small, since itj is determined 
only by the small V component and its radial gradient. Therefore the sound 
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radiation normal to the jet axis caused by mean flow-turbulence interaction is, 
as known from previous results, very small. 

Nevertheless, the importance of the contributions of the higher azimuthal 
constituents with m >= 1 can be estimated. Let us assume for a moment that the 
amount for all m is of the same order of magnitude. Then it follows from 
(3.10) that, for a fixed Strouhal number and Mach number (i.e. fixed ICD), the 
magnitude of Z, decreases with increasing m. This is obvious from the behaviour 
of the Bessel functions. For fixed argument CT, J,(cr) tends to  zero for sufficiently 
large m (cf. Michalke & Fuchs 1974). For M < 1, we have, however, 
v 5 6 < 2nR*St, and can therefore estimate the number of azimuthal con- 
stituent's which contribute most essentially t o  the power spectral density W,, 
of the sound pressure for a given Strouhal number. It will become clear from the 
experimental results in 3 7 that, at least for 0.2 5 X t  5 1 and small Mach numbers, 
additionally the amount of lrlz, 

Hence we can conclude that, for a fixed Mach number, the number of azimuthal 
constituents of turbulence contributing essentially to the sound power spectrum 
q,IT is most likely limited. This number depends on both the jet angle 8 and the 
Strouhal number St. The largest number of constituents that have to  be con- 
sidered as important for jet noise will occur for 8 = 90" and high Strouhal 
numbers. In  order to  estimate the magnitude of the various azimuthal con- 
stituents I qz, l,L 1 ,  experiments have been carried out, which are described in the 
following. 

decreases rapidly with increasing m. 

5. Measuring procedure 
A description of the jet rig used in the present investigation was given in 

Michalke & Fuchs (1974). Most of the measurements to be reported in this paper 
were done for an exit velocity Uo = 60 m s-l. At the corresponding Reynolds 
number Re, = 4 x lo5 the nozzle boundary layer does not seem to  be completely 
turbulent. In  an investigation parallel to the present, this will be checked, and 
the effect of a trip wire on the downstream jet disturbances will be studied. The 
nozzle diameter was D = 10cm. The possibilities of, and limitations on, direct 
fluctuating pressure measurements in turbulent flows were discussed in Fuchs 
(1970, 1972 b) .  The proposed technique, which employs standard condenser 
microphones suitably fitted with a nose cone of streamlined shape, seems to be 
accepted by other experimenters, too, as may be inferred from Arndt & Nilsen 
(1966); Arndt, Tran & Barefoot (1972); Scharton & White (1972); Scharton, 
White & Rentz (1973); Nagamatsu & Sheer (1972); Nagamatsu, Sheer & Bigelow 
(1972); Meecham & Hurdle (1974). But Lau (1971) pointed out that, for higher 
Mach numbers above 0.7, this technique may become questionable, owing to 
several probing difficulties. A more sophisticated static pressure measuring 
device was described by Siddon (1969), who also gave some estimates of the 
probe-flow interference error. 

In  figure 1 logarithmic plots of spectra at  x = 3Dfor Uo = 60 m s-1 are depicted. 
The lower curve was taken with the t i n .  microphone probe on the jet axis. Its 
linear fall-off between 360Hz (St = 0.6) and 1500Hz (8t = 2-5) is followed by 
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St = fD/U, 

FIGURE 1. Pressure spectra F ( 8 t )  measured in a circular jet, in the plane x = 3 0 :  
averaging time 100s; bandwidth Af = 10Hz; U, = 60ms-1. 

a region where the dynamic range of the electronics ( <  60db) did not allow 
accurate measurements. Instead of the apparent levelling off a t  Strouhal 
numbers above 2.5, the true spectrum would more likely continue to fall. 

The upper solid curve in figure 1 represents the spectrum measured a t  a 
position in the central mixing region. The dashed curve, as taken with the & in. 
pressure probe, indicates that, a t  higher frequencies corresponding t o  smaller 
turbulence scales, the resolution of the larger probe cannot be perfect. Further- 
more, in this part of the turbulent flow there may still be other probe-flow 
interferences, too, which were discussed elsewhere. These, however, are not 
believed to invalidate the present experiments in the important range of Strouhal 
numbers between 0.1 and 1.8, where the pressure coherence measurements were 
performed. The signals detected by either the t in .  or &in. microphone probes 
were taken as a t  least a sufficiently close analogue to the true local pressure 
fluctuations in the flow with no probes inserted. 

Figure 2 gives a survey of the r.m.s. pressure j5 in both the potential core (r = 0) 
and mixing region ( r  = $D). The values for the two exit speeds 100 and 60 m s-1 
are seen to collapse when j3 is suitably normalized by po Ui ,  as one would expect 
for an aerodynamic property of the undisturbed flow itself. It is worth noting 
that the overall pressure amplitude exhibits an absolute maximum at x = 30, 
r = 40. Although the corresponding value at r = 0 is only one third of this 
maximum, figure 1 tells us that this is mainly due to the rapid decay of the lower 
and higher frequency components, whereas for Strouhal numbers around 0.45 
the intensity varies only little across the jet (in fact less than 30 yo). 

The analog data analysis procedure is fairly standard and described else- 
where (cf. Michalke & Fuchs 1974). The coincident spectral density function 
(co-spectrum) of the pressure is defined as 

1 r T  
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X P  

FIGURE 2. Variation of normalized pressure intensity along the jet in potential core 
and mixing region. U, (ms-l): -0-, 60; -0-, 100. 

for the limiting case Af --f 0, T +a. The corresponding quadrature spectral 
density function (quad-spectrum) is 

Q, = 

Both the functions C, and 

EJ 

Q, are always normalized by the spectral densities, 

The po signal is shifted 90" out of phase compared with the p signal a t  one of the 
filter outputs. 

I n  order to  keep the normalized random error small, i.e. 

8 z (AfT)-g < 1, (5.4) 

it is necessary to adjust the sampling or averaging time T according to the band- 
width Af chosen in the filtering process. Most of the coherence measurements 
were done at filter mid-frequencies between 68 Hz and 1080 Hz corresponding to 
Strouhal numbers between 0-1125 and 1.8 (for Uo = 60ms-l). A constant filter 
bandwidth Af of 10Hz was deemed sufficiently narrow to obtain optimized 
correlation results characteristic of the frequency components selected (i.e. to  
keep the frequency resolution error small). Preliminary tests then revealed that 
it sampling time T of approximately 200s is necessary to produce practically the 
same results in repetitive samples, although B z 2 yo would seem too optimistic 
as a statistical error estimate in terms of a fractional portion of the measured 
correlation values. 
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6. Evaluation of space correlation data 
6.1. Cross-spectral density functions derived f rom two-point 

correlation measurements 

There has been some consideration of how to interpret narrow-band space correla- 
tions with respect to an appropriate model for the turbulence generating jet 
noise. When studying the statistical interdependence of signals detected at  dif- 
ferent axial positions, the downstream convection of the turbulence represents 
itself as a particularly strong coherence of certain narrow- band frequency com- 
ponents of the signals. The question whether such components should be attri- 
buted to 'wavelike ' disturbances or 'frozen' turbulence was discussed in some 
detail by Fuchs (1972b). (See the appendix of that paper.) 

In  the context of the expansion scheme, which was developed in $ 3 ,  this 
question is irrelevant, since no restrictions were madc concerning a specific 
structure of the turbulent field. The longitudinal correlation results cited above 
may be taken solely as a hint that the integration of (2.8) must be extended over 
much of the jet owing to WPlP2(Ax) being finite for axial displacements Ax of 
several jet diameters. This illustrates the importance of the interference function 
in the integral representation (2.8) of the far-field power spectrum W,, owing to 
mean flow-turbulence interactions, which can be written in the compact form 

c c 

where F, = w(4nfa;)-l and HI, = zl L, exp [iki(y, - y{J]. 

I n  this part of the paper, we take the decay function F, and interference function 
H,, as all being known or deducible from standard jet experiments or theory, and 
confine our attention to what cannot be assumed known from previous investiga- 
tions: the cross-spectral density WPlP, of the fluctuating pressure in a turbulent 
jet. 

It is not possible to determine the complex quantity WPIpz directly by analog 
techniques. But the cross-spectral density of the pressure fluctuations is easily 
derived from co- and quad-spectra estimates, according to (5.1) and (5 .2 ) .  
Departing from Bendat & Piersol's (1971) definition, in the relationship 

= $(C,+i&,), (6.2) 

the quadrature spectral density function Q, appears with positive sign. 

6.2. Symmetry considerations for  a round jet  

Only for the special case of a more or less isotropic small-scale turbulence field 
would the functions involved in the integral solution (2.8) most suitably be 
described in Cartesian co-ordinates. If, however, one considers the sound radia- 
tion from large-scale coherent turbulence extending over the whole jet, 
Go-ordinates should be chosen that are better adapted to the basically circular 
geometry of the jet and its source structure. The transformation from yi to 
cylindrical co-ordinates, e.g. 

y I l P Z ( Y i l ,  YiZ) --f JP1P2(&? R,, $1, %., R,, 9 2 L  
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was made in 5 3. Three types of symmetry assumptions may be valid in a round 
jet. Their fulfilment in the present model jet will simplify the experimental 
procedure in what follows. 

(i) Axisymmetric geometry. With the geometry of the jet nozzle, plenum 
chamber, diffusor and muffler being strictly axisymmetric, one may define this 
axis of symmetry by optical means or by mean flow measurements. By pre- 
liminary plottings of velocity profiles normal to the jet it was possible t o  align 
the travelling probe supports such that r = 0 was well defined as a reference 
position for varying axial probe positions x.  

(ii) Circumferential homogeneity. This condition requires that any time- 
averaged property of the flow should be independent of the angle #. Likewise, 
there should not be a preferred azimuthal angle in the radiation characteristics, 
either. This homogeneity was checked experimentally within the flow; hence 
we have 

A real jet engine may fulfil this symmetry condition only in a limited sense. Any 
corrugations or notches a t  the nozzle, cellular structures or splitters near the 
eflux area would inevitably cause a dependence of data on the azimuth angle # 
(or q5' in the far field). 

(iii) Circumferential isotropy. Finally, a correlation function may, under 
certain circumstances, be independent of the sign of the angular displacement. 
Then we have 

Such a symmetry condition would imply that, on a statistical average, disturb- 
ances should have no preference to travel in the positive or negative circum- 
ferential direction. This isotropy assumption was also checked in the model jet 
under investigation. But it may be less valid for a real jet when, for some reason, 
a mean swirl is superimposed on the exhaust flow before i t  leaves the nozzle exit. 

6.3. Azimuthal Fourier coeficients from circumferential correlations 

The basic idea in the expansion scheme of 9 3 was to  perform a Fourier decom- 
position of the jet noise source function (i.e. the CSD of the turbulent pressure). 
Equation (3.1) is rewritten here as 

m 

Wp,,, = c %2,m (4, R,, x2, R,) exp (im4$), (6 .5)  
m=-m 

where homogeneity of the kind described in (6.3) was considered. If, finally, 
isotropy of the kind defined by (6.4) is taken into account, (6.5) may be written as 

(6.6) 
m 

wp, p ,  = c %2,m(X1, R,, x2, R2) cosmA#, 
m=O 

where the relation between q2,m and q,,, is defined by (3.13). 

can be written in a more compact form of (3.12) as 
The corresponding azimuthal constituents of the far-field sound pressure PSD 
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where the decay function 

the radial interference function 

A .  Michalke and H .  V .  Fuchs 

P = M2Xt(477RU0 D)-', 

the axial interference function 

-Fj, = exp [ - ikD cos d ( X ,  - X,)] ,  

and the annular volume element 

dV,  = D32nR dR d X .  

The azimuthal constituents q,,, contained in (6.7) are simply related to the 
measured co- and quad-spectra. Comparing (6.6) and (6.2), we find 

The real Fourier coefficients C,,, and Q,,, are the computational result of 
a Fourier analysis of the measured functions C,(A$) and Q,(A$) with the 
frequency f or Strouhal number Xt held constant in each set of narrow-band 
correlations: 

m a 

c,(A$) = C C , , m ~ ~ ~ m W ,  Qd4$) = E Q, , ,cos~A$,  (6.9) 
m=O m=O 

a t  constant axial and radial position (X, ,  R,) and (X,, R,). 

circumferential correlations with 
To illustrate the general computational procedure, the special case of purely 

X ,  = X ,  = X and R, = R, = R 

is considered here (i.e. these measurements are done in a plane normal to the jet 
axis). I n  this special case, Q, is found to be identically zero within the measuring 
accuracy. This is a logical consequence of the isotropy condition; for a finite Q, 
would imply that a definite phase difference y(44,f) exists (on a statistical 
average), the magnitude of which results from 

tan y = Q,/C,. (6.10) 

But this would indicate a definite tendency of the jet disturbances to travel (or 
be convected) in one particular circumferential direction. That seems not impos- 
sible; but it would be incompatible with the isotropy assumption for a strictly 
axisymmetric circular jet (compare 9 6.2).  

Another characteristic feature of the purely circumferential correlation is that 
the Fourier coefficients are equivalent t o  the PSD of the individual azimuthal 
constituents of the fluctuating pressure. This follows from (6.9) for A# = 0: 

On the other hand, (5.1) (and similarly ( 5 . 3 ) ) ,  in this special case, can be written as 

C,(0) = jjt = jY(f,Af),/Af for Af+O. (6.12) 
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I - 0.2 J 

FIGURE 3. Azimuthal correlation coefficients in the plane x = 30, at constant radii, for 
St = 0.45, A f =  IOHz, ?Yo= 60ms-l: --- , broad-band; - , narrow-band analysis; 
x , velocity correlation; 0, pressure correlation. 

An appropriate way of normalizing the coefficients is therefore a division by @;; 

( 6 . 1 3 )  

Cm,m/@: then describes the percentage of fluctuating energy contained in the mth 
azimuthal constituent of the fluctuating quantity for the particular values of the 
parameters X ,  R and f (or at). 

I n  practice, a finite number has to  be chosen for m to approximate the measured 
CU(A$)/p: by azimuthal constituents C,,wl[j5$ m = 16 was deemed sufficient here, 
since most of the energy of the fluctuating pressure field was found in the lower- 
order azimuthal constituents anyway. This is quite obvious from the circum- 
ferential correlation curves a t  x = 3 0 ,  which were plotted as a typical example 
in figure 3 .  The two upper solid curves represent measurements with pressure and 
hot-wire probes positioned a t  r = aD in the jet core region with the filter 
frequency set a t  a Strouhal number St = 0.45. The intimate connexion between 
p' and the longitudinal velocity fluctuations u' in this flow region was discussed 
by Fuchs ( 1 9 7 2 ~ ) ;  it is here seen to result in almost identical coherence curves. 

In  the jet mixing region ( r  = ill), however, the statistical character of both 
signals differs considerably. This difference is brought out most strikingly by the 
two lower solid curves, which were measured a t  the same location in the jet, and 
again a t  a Strouhal number of 0.45. They were therefore chosen to illustrate the 
method of azimuthal Fourier decomposition of fluctuating field quantities. The 
Fourier analysis of a large number of circumferential correlations is done on a 
digital computer. m = 16 values for C,lj5; are taken a t  equidistant angular dis- 
placements A$ from interpolated correlation curves, like those depicted in 
figure 3, which ought to be symmetrically completed for 180" < A$ < 360". 

13 F L M  70 



194 A .  Michalke and H .  V .  Puchs 

0.3 

N 3  

9 0.2 

us 

0- 1 

0 2 4 6 8 10 12 14 16 

m 

FIGURE 4. Resolution of turbulent pressure and velocity correlations into rn = 16 azimuthal 
coefficients, from data in figure 3, for r = $0, St = 0-45. 

The result of the analysis for the pressure a t  r = $D in figure 4 shows that the 
lower-order azimuthal constituents m = 0, 1, 2 ,3  are by far the strongest for this 
particular frequency component. With the dashed horizontal line in figure 4 
indicating the fictitious case when the fluctuating energy is evenly distribut,ed 
over all azimuthal constituents, one may conclude that constituents with m > 3 
are clearly under-represented. In  fact, they are almost negligible form 3 10, thus 
justifying a restriction to only nz = 16 constituents in this approximate Fourier 
analysis. 

In  figure 4 there are also shown the corresponding azimuthal coefficients of the 
axial velocity fluctuations in exactly the same flow region where the pressure was 
measured. A more even distribution is apparent, although in this case azimuthal 
constituents for m around 5 seem still to dominate by a factor of 2 in relation 
to the average. 

The marked difference between the pressure and axial velocity in the mixing 
region manifests itself, once again, in the amount of energy contained in the axi- 
symmetric (ring-vortex) constituents (m = 0 )  of both fluctuating quantities 
(42 % of the m.s. pressure compared with only 5 % of the m.s. velocity). This 
difference would be even more pronounced (namely, 29-1-3 %) had the corre- 
sponding broad-band correlations (dashed curves in figure 3) been analysed. This 
may help to explain why large-scale coherent turbulence structures were often 
overlooked in correlation analyses with hot-wire probes in the mixing region 
of a jet. 

7. Resolution of turbulent pressure field into azimuthal constituents 
7.1. Power spectral density of lower-order azimuthal constituents 

Narrow-band circumferential correlations of the kind described in 3 6 .3  were 
performed in planes normal to the jet axis a t  x/D = 1, 3, 6 and 12. These com- 
plement earlier pressure correlation measurements reported by Puchs (1  9723) 
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which dealt mainly with longitudinal Ax and lateral AY probe displacements and 
with a separation of the axisymmetric m = 0 constituent from the rest of the 
turbulence. The circumferential separation of the probes A# was made in steps 
of 15-30', depending on the gradient of the correlation curve. The measurements 
were done a t  St = 0.1125, 0-225, 0.45, 0.9, 1.8, and for constant radii r/D = t ,  
4 and $, 1,$. All except the one at x = D, Y = $0 were made in the turbulent 
mixing zone of the jet. 

The resulting correlations are not reproduced here. Instead, the normalized 
Fourier coefficients Cw,m/f7i were plotted in figure 5 for m from 0 to 5, and only one 
measuring plane x = 3 0 ,  selected for illustration. (For more comprehensive 
experimental results the reader may refer to Michalke & Fuchs 1974.) The 
percentage of energy contained in the azimuthal constituents with m 5 is 
almost negligible within the range of Strouhal numbers selected, the corre- 
sponding computational results being omitted here, and in the evaluations to 
follow. 

The results depicted in figure 5 show a pronounced peak of the m = 0 con- 
stituent a t  Xt = 0.45 for all radial positions. I n  contrast, for frequencies both 
sides of this peak, the m = 1 constituent seems to dominate across the jet. The 
relative strength of the rest of the constituents shows only little variation with r .  
There is a clear tendency of these higher azimuthal constituents (1 < m 6 5 )  to 
become more prominent for higher St. The same trend is also visible for St well 
below 0.45. A comparison of the experimental data obtained a t  different axial 
positions shows only a slight change in the results for r = $D, but some marked 
variations in the r = BD data. Closer to the nozzle edge, the m = 1 constituents 
obviously dominate for all frequencies, whereas the m = 0 and m = 2 fluctuations 
of the pressure are approximately equal in strength. The results further down- 
stream (x = 6 and 1 2 0 )  indicate that there the axisymmetric constituents become 
less prevailing too, except for the small value of r .  Right on the axis (Y = 0) only the 
axisymmetric pressure component can exist owing to symmetry considerations. 

The measurements a t  four discrete Xt were interpolated linearly in figure 5 .  
The values a t  intermediate Strouhal numbers were also used in the following 
evaluation for the spectra of the first four or five azimuthal constituents of the 
pressure in the plane x = 3 0  as shown in figures 6 (a)-(c). The equations (6.11)- 
(6.13) were used to obtain the respective non-dimensional normalized PSD of 
the mth constituent: 

jP(( f )  is the directly measured (non-resolved) m.s. pressure filtered a t  a frequency 
f and bandwidth Af. The normalized form of p2(  f ), which appears in (7.1) as a 
multiplier for the normalized Fourier coefficients, was plotted in figures 6 (a)-(c), 
along with the PSD's of the individual azimuthal pressure constituents. 

Different vertical scaling was used in figures 6 (a)-(c). The non-resolved PSD 
attains a maximum in the middle of the mixing region (figure 6 ( b ) )  and decays 
very rapidly towards the entrainment region (figure 6 (c)). With increasing Y the 
spectral :peak is slightly shifted towards lower St. The PSD of the axisymmetric 

13-2 
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FIGURE 5.  Percentage of energy contained in low-order azimuthal constituents of fluctuating 
pressure field. Correlation and Fourier anaIysis at  z = 30, 77, = 60ms-l. m: 0-0, 0 ;  
x - x  , 1 ;  o-.-.-- 0 , 2 ;  +---+, 3; A-A, 4; n---o, 5. 

constituent (m = 0) shows but little change for r = tD and r = 40 whereas the 
m = 1 , 2 , 3 ,  4 constituents have strengthened by a factor between 2 and 4. In  the 
important range of St between 0-1 and 1.0 the decay for r > +D is strongest for 
the axisymmetric pressure disturbance, the shift of the peak frequency being 
most pronounced for the higher azimuthal constituents. 

7.2. Variation along the jet of azimuthal frequency components 

I n  this subsection the results of the Fourier analysis of circumferential correla- 
tions (at r = +D) are conaidered as a function of downstream location. The 
normalized Fourier coefficients were plotted against x/D in figure 7, with the four 
Strouhal numbers selected as a parameter (St = 0-225, 0.45, 0.9 and 1.8). These 
four diagrams reveal a very important result: the azimuthal constituent with 
m = 1 clearly dominates along r = +D over the whole of the noise-producing jet 
region, and not the axisymmetric component. Differing statements in earlier 
publications, which overestimated the importance of the axisymmetric content 
in the pressure field a t  r = +D, may readily be explained by figure 7. Most of the 
earlier space correlations were done a t  St = 0.5 or 0.45, and around x = 3 0 .  
Actually, only in this rather limited range of parameters does the m = 0 con- 
stituent dominate, as may be seen from figure 7 (b). 
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st = fDfU, 

FIGURES 6(a ,  b ) .  For legend see next page. 

The following was not so clear from the previous plottings: consideration of the 
sequence figures 7 (a)-(d) (8t = 0.225, 0.45, 0.9, 1-8, respectively) most vividly 
shows that the different St-components attain their maximum intensity level at  
widely separated axial positions in the mixing region, no matter which azimuthal 
constituent is considered. The vertical scaling was not varied in figure 7, in order 
to visualize the relative magnitudes of the different frequency components. The 
St = 0.45 component undoubtedly shows the biggest variations in the down- 
stream direction and the strongest energy concentration at x = 30. 
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FIGURE 6. Normalized PSD of azimuthal constituents of jet pressure, from (7.1) and data in 
figure 5, for z = 3 0 .  Symbol key as for figure 5. T :  (a )  $D; ( b )  90; ( c )  D. 

Unfortunately, no circumferential correlations were performed at  St < 0.225.  
Therefore, only the non-resolved frequency component at St = 0.1 125 was 
plotted, along with the corresponding r.m.8. pressure of the other frequency 
components in figure 8. @( f) as a function of x/D was normalized by twice the 
stagnation pressure at the jet exit plane. The trend of such intensity plots to peak 
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FIGURE 8. Variation along the jet of unresolved frequency components of the 
pressure, for r = tD. 

further downstream the lower the Strouhal number is seen to continue with the 
St = 0-1125 component, which reaches a maximum as far as 8 diameters 
downstream. 

From figures 7 and 8, one may deduce that halving of the frequency is coupled 
with, roughly, doubling the distance from the jet exit where the individual 
frequency components reach their maximum level. The lower the maximum level 
is, the slower does the intensity decay downstream of it. The ascent towards the 
maximum, on the other hand, becomes monotonically steeper for increasing St. 

The association of different downstream flow regions with characteristic 
frequencies or scales of the turbulent motion reflects the development of the 
turbulent structure as it convects and reorganizes in a shear layer of steadily 
broadening width. This cascade-like appearance of bigger vortices following the 
smaller ones is in agreement with existing models of the large-scale coherent 
structures as will be discussed later. Apart from this, figure 8 may serve as a 
valuable supplement to the overall pressure intensity survey in figure 2. 

8. Discussion of experimental results 
A new experimental method has been constructed, which enables one to make 

a straightforward quantitative analysis of the fluctuating pressure field in a 
circular air jet. It is based on narrow-band circumferential space correlations. 
It is particularly appropriate for studying large-scale coherent phenomena 
in jet turbulence which, so far, have mainly been described by means of more 
qualitative flow visualization techniques. The fluctuating energy contained in 
a narrow frequency band is split into azimuthal constituents and then plotted 
as a suitably normalized PSD for a given axial and radial location in the jet. 

Figures 6 (a)-(c) show the variation of the spectra in a plane normal to the jet, 
which was chosen to lie a t  x = 30, where, according to figure 2, the overallfluctua- 
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FIGURE 9. Synthesis of normalized PSD of jet pressure from m = 16 
azimuthal constituents for x = 30, r = +D. 

tions are obviously strongest, The dominance of the axisymmetric constituent 
of the pressure is most obvious in the potential core region (figure 6 (a)).  By far 
most of the energy is contained in the range of Strouhal numbers between 0.1 
and I .  The variation of individual azimuthal frequency components along a path 
r = +D parallel to the jet axis (figures 7 (a)-(c)) clearly demonstrates that, for 
x /D  between 1 and 10, it is justifiable to approximate the pressure by its four 
lowest azimuthal constituents. 

A superposition of the m = 0, 1 , 2 , 3  constituents in figure 9 (reproduced from 
Fuchs 1974) in fact visualizes this rather unexpected situation; and it is an 
essential result to be reported in this paper. It is entirely independent of the 
theoretical analysis for the radiation field, which was not meant to predict the 
composition of the source quantity. Nevertheless, it has an enormous impact on 
the particular jet noise expansion scheme put forward in this paper. Since the 
latter predicts an excellent efficiency for these lower-order pressure constituents 
in generating noise, both results complement each other in a most profitable way. 
They help reduce the vast amount of correlation data required to evaluate an 
integral solution of the form (6.7). 

It is pointed out here that we restricted our attention to a limited range of Xt, 
since we were primarily interested in that part of the turbulent pressure which 
most likely determines the jet noise emission. A more comprehensive study of the 
whole turbulence spectrum would probably reveal, for Strouhal numbers below 
0.2 and above 1 , a more even distribution of energy over the m azimuthal con- 
stituents. Such a tendency is obvious from figure 5. Likewise, we were primarily 
interested in that part of the jet between x/D = 1 and 12, which is known t o  be 
mainly responsible for the jet noise emission. It may be surmised, from figure 7, 
that, in the transition region further downstream, the balance between the 
azimuthal constituents may again differ considerably from that in the core and 
mixing regions. 
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FIGURE 10. Mean separation distance between neighbouring large-scale structures in a jet, 
after Laufer et al. (1974). Arrows indicate results from evaluation of extrema in figure 8, 
using (8.2) with V,/V, = 0.65. 0 ,  Peterson; 0, KO & Davies; A, Fuchs; +, Lau, Fisher & 
Fuchs; 0, Crow & Champagne. 

The association of different downstream flow regimes with varying longi- 
tudinal and lateral scales of the turbulence pattern deducible from figure 8 
leads to an important extension of the Lau et al. (1972) model of evenly spaced 
ring vortices. I n  a more realistic view of the continuous flow development in the 
mixing region, one may assume that the scale of the coherent structures h is 
roughIy proportional to the local width L, of the shear layer, which itself increases 
linearly with distance x from the nozzle: 

This fact was first emphasized by Laufer, Kaplan & Chu (1974). Their corre- 
sponding figure 3 is reproduced here as figure 10 with the experimental data 
evaluated from the occurrence of the peaks in figure 8 added as dark triangles. 
A constant convection velocity U, of 0*65U0 was taken to relate frequencies and 

h f f L r - x .  (8.1) 

u, -vclu, scales of the structures: 
-= -  
D fD St ' 

Useful comparative material for the proportionality assumption St N x-1 may 
also be found in Arndt et al. (1972, figure 24) and from the results of Chan (1 974a). 

With respect to the pairing process of neighbouring vortices, which Laufer et al. 
(1974) believe to be the key to the understanding of the turbulent mixing process 
and to the noise generation as well, it is noted that any kind of purely axisym- 
metric ring vortex model does not take into account the next higher azimuthal 
components, which, as was shown in 5 7, may be of the same order of magnitude 
in fluctuating energy. As far as the pressure field in the mixing zone is concerned 
(figure 7), it is the m = 1 constituent that clearly dominates. This component 
may be thought of as being associated with a random, fish-tail, wiggling type of 
motion in the jet. In  other words, having replaced the picture of entirely dis- 
ordered fine-scale turbuIence by a model of relatively ordered large-scale 
coherent structures, one is now urged not to oversimplify the actual situation in 
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a turbulent jet by confining oneself exclusively to the m = 0 components, which 
always remain phase-locked circumferentially. 

The behaviour of the jet pressure fluctuations as they propagate down the 
jet was discussed by Fuchs (1972b), on the basis of narrow-band longitudinal 
correlation measurements. The wavelike character observed is not considered 
here; for it has no direct impact on the expansion scheme put forward in this 
paper. The latter would be applicable even if the coherence in the streamwise 
direction were less pronounced. It may be recalled, however, that high coherence 
of turbulent fluctuations a t  widely displaced locations in a jet was first discovered 
for longitudinal and lateral displacements of the measuring probes. 

9. Conclusions 
The investigations reported are part of a continuing effort to analyse fully the 

statistical properties of the fluctuating pressure field in turbulent model jets 
with respect to the jet noise problem. The analysing technique employed has 
proved useful, because it enables measurement of exactly those quantities 
involved in an integral representation for the far-field sound pressure PSD like 
that in (6.7). 

The experimental results so far have shown, in definite figures, exactly how 
strong the more coherent part of the pressure field is in a selected plane x = 3 0  
normal to the jet axis. Still a lot remains to be done in cross-correlation or cross- 
spectral density measurements including all three : longitudinal, lateral and 
azimut'hal probe separations. It is hoped that studies along these lines will finally 
enable the introduction of a realistic turbulence model into the jet noise theory 
as based on Lighthill and further developed by Michalke to take into account 
certain aspects of axisymmetric shear flows in particular. 

A conclusion which can be drawn from the present experimental and theoretical 
results (as far as the jet noise produced by mean flow-turbulence interaction is 
concerned) is that most of the radiated noise in the important Strouhal number 
range 0.2 d St < 1 can be associated with only a small number of low-order 
azimuthal components of the jet turbulence. 

The intimate connexion between the large-scale coherent jet structures and 
instability mechanisms in the turbulent (finite-thickness) shear profile was often 
conjectured, e.g. by Ffowcs Williams (1974) in his evaluation report of the 1973 
AGARD Specialists' Meeting on Noise Mechanisms, and by Chan (1974a). 
Several researchers have worked on instability theories that take into account 
the steadily growing shear-layer width, and the effect of solid boundaries a t  the 
origin of the flow. 

Another possible sideway, which would by-pass some of the tremendously 
time-consuming correlation measurements, could be to introduce into the 
theory of suitable models for the longitudinal (nearly wavelike) and lateral 
correlations on the basis of already available experimental evidence and investi- 
gate the effect of moderate deviations from these model assumptions on the 
radiation pattern. A first step in this direction may be seen in a short note by 
Chan (1974b). 
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Finally, an attempt will be made to modify the turbulence structure in such 
a way that it becomes less coherent, and thereby less efficient in generating 
sound. The quin-axial jet noise suppressor of Scharton & White (1972), and the 
characteristics of the screen-perturbed jets of Arndt et al. (1972) are taken as 
promising hints that there may still be space for novel developments in the 
thicket of jet noise research and abatement. 

Some of the correlation measurements were performed by F. Bischoping and 
described in his diploma thesis. R. R. Armstrong, who recently joined the group, 
provided valuable data confirming the validity of the pressure measuring devices. 
The authors wish to thank members of the two institutes who, in so many ways, 
enabled the preparation of this paper. Thanks are also due to the Deutsche 
Forschungsgemeinschaft , who kindly provided financial support during the 
course of the work. 

Appendix 
The inviscid momentum equation is in the source region 

Scalar multiplication by the unit vector xi/? yields the component of the 
vector equation (A 1) in the xi direction, as indicated by the index T :  

Multiplication of (A 2) by nc;-l leads to 

a (C;)+nc;-l- aP = 0. 
at aYr 

Adding the continuity equation multiplied by c; to (A3), the latter can be 
written as 

a a aP - (pc;) + - (pc,c)) + nc:-l- = 0. 
at aYk aYr 

If we takethetimederivativeof (A4),evaluateit attheretardedtimeandintegrate 
the equation over the source region V, then the following equation is obtained: 

(A 4) 

where use has been made of the far-field approximation valid for any functionf 
vanishing at  the surface of V: 
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For n = 2,  the left-hand side of (A 5) is identical with the integral of the Lighthill 
solution (2.4). Therefore it can be replacedby the right-hand side of (A 5), yielding 

The last term of (A 7) can again be replaced by means of (A 5) for n = 3. Then, 
after repeated applications of (A 5), (A 7) leads to 

where M, = cr/ao. For M, < 1 the term in the brackets ( ) can be written as 

Therefore the alternative form of the Lighthill integral solution (2.4) is, for 
x< 1, 

It should be emphasized that the powers of (1 -M,) appearing in (A 10) are a 
consequence of the series (A 8). They are completely different from convective 
amplification terms of the type (1  -Me cos @-., which have been derived by e.g. 
Jones (1968), when the turbulence is considered in a frame of reference moving 
with the convection speed U, of eddies. 
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